众所周知,InnoDB采用IOT(index organization table)即所谓的索引组织表,而叶子节点也就存放了所有的数据,这就意味着,数据总是按照某种顺序存储的。所以问题来了,如果是这样一个语句,执行起来应该是怎么样的呢?语句如下:
select count(distinct a) from table1;
列a上有一个索引,那么按照简单的想法来讲,如何扫描呢?很简单,一条一条的扫描,这样一来,其实做了一次索引全扫描,效率很差。这种扫描方式会扫描到很多很多的重复的索引,这样说的话优化的办法也是很容易想到的:跳过重复的索引就可以了。于是网上能搜到这样的一个优化的办法:
select count(*) from (select distinct a from table1) t;
从已经搜索到的资料看,这样的执行计划中的extra就从using index变成了using index for group-by。
但是,但是,但是,好在我们现在已经没有使用5.1的版本了,大家基本上都是5.5以上了,这些现代版本,已经实现了loose index scan:
很好很好,就不需要再用这种奇技淫巧去优化SQL了。
文档里关于group by这里写的有点意思,说是最大众化的办法就是进行全表扫描并且创建一个临时表,这样执行计划就会难看的要命了,肯定有ALL和using temporary table了。
5.0之后group by在特定条件下可能使用到loose index scan,
CREATE TABLE log_table ( id INT NOT NULL PRIMARY KEY, log_machine VARCHAR(20) NOT NULL, log_time DATETIME NOT NULL ) ENGINE=InnoDB DEFAULT CHARSET=utf8; CREATE INDEX ix_log_machine_time ON log_table (log_machine, log_time);
1
SELECT MAX(log_time) FROM log_table; SELECT MAX(log_time) FROM log_table WHERE log_machine IN ('Machine 1');
这两条sql都只需一次index seek便可返回,源于索引的有序排序,优化器意识到min/max位于最左/右块,从而避免范围扫描;
extra显示Select tables optimized away ;
2
复制代码 代码如下:SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1','Machine 2','Machine 3','Machine 4');
执行计划type 为range(extra显示using where; using index),即执行索引范围扫描,先读取所有满足log_machine约束的记录,然后对其遍历找出max value;
改进
复制代码 代码如下:SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1','Machine 2','Machine 3','Machine 4') group by log_machine order by 1 desc limit 1;
这满足group by选择loose index scan的要求,执行计划的extra显示using index for group-by,执行效果等值于
SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1') Union SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 2') …..
即对每个log_machine执行loose index scan,rows从原来的82636下降为16(该表总共1,000,000条记录)。
Group by何时使用loose index scan"htmlcode">
SELECT c1, c2 FROM t1 GROUP BY c1, c2; SELECT DISTINCT c1, c2 FROM t1; SELECT c1, MIN(c2) FROM t1 GROUP BY c1; SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2; SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2; SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2; SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2 SELECT c1, c3 FROM t1 GROUP BY c1, c2;--无法使用松散索引
而SELECT c1, c3 FROM t1 where c3= const GROUP BY c1, c2;则可以
紧凑索引扫描tight index scan
Group by在无法使用loose index scan,还可以选择tight,若两者都不可选,则只能借助临时表;
扫描索引时,须读取所有满足条件的索引键,要么是全索引扫描,要么是范围索引扫描;
Group by的索引列不连续;或者不是从最左前缀开始,但是where条件里出现最左列;
SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3; SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;
5.6的改进
事实上,5.6的index condition push down可以弥补loose index scan缺失带来的性能损失。
KEY(age,zip)
mysql> explain SELECT name FROM people WHERE age BETWEEN 18 AND 20 AND zip IN (12345,12346, 12347); +----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+ | 1 | SIMPLE | people | range | age | age | 4 | NULL | 90556 | Using where | +----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+ 1 row in set (0.01 sec)
根据key_len=4可以推测出sql只用到索引的第一列,即先通过索引查出满足age (18,20)的行记录,然后从server层筛选出满足zip约束的行;
pre-5.6,对于复合索引,只有当引导列使用"="时才有机会在索引扫描时使用到后面的索引列。
mysql> explain SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347); +----+-------------+--------+-------+---------------+------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+------+---------+------+------+-------------+ | 1 | SIMPLE | people | range | age | age | 8 | NULL | 3 | Using where | +----+-------------+--------+-------+---------------+------+---------+------+------+-------------+ 1 row in set (0.00 sec)
对比一下查询效率
mysql> SELECT sql_no_cache name FROM people WHERE age=19 AND zip IN (12345,12346, 12347); +----------------------------------+ | name | +----------------------------------+ | 888ba838661aff00bbbce114a2a22423 | +----------------------------------+ 1 row in set (0.06 sec) mysql> SELECT SQL_NO_CACHE name FROM people WHERE age BETWEEN 18 AND 22 AND zip IN (12345,12346, 12347); +----------------------------------+ | name | +----------------------------------+ | ed4481336eb9adca222fd404fa15658e | | 888ba838661aff00bbbce114a2a22423 | +----------------------------------+ 2 rows in set (1 min 56.09 sec)
对于第二条sql,可以使用union改写,
mysql> SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=19 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=20 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=21 AND zip IN (12345,12346, 12347) -> UNION ALL -> SELECT name FROM people WHERE age=22 AND zip IN (12345,12346, 12347);
而mysql5.6引入了index condition pushdown,从优化器层面解决了此类问题。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]