围绕商品的站内个性化推荐,根本点是围绕用户在购物生命周期内不同阶段做个性化推荐。那么用户不同阶段有哪些特点?
根据互联网时代的AISAS用户行为模式,用户依次会经历注意到——感兴趣——搜索——购物行为——分享这五个阶段,推荐也是在这五个阶段进行的。这五个阶段背后又有细分的用户行为。
第一阶段:注意到
这个过程中,我们需要让用户看到我们的产品,因此在用户浏览首页、超市页、列表页、产品详情页的过程中,就要不遗余力的推荐用户去看我们的商品。
但当用户看到该商品之后,我们需要根据不同的情况作引导区分:
情况一:针对不满意当前商品的用户引导。这部分用户由于价格、库存、促销等因素,对当前商品不满意,通常情况下会产生退出。此时,我们需要针对用户浏览轨迹,做商品浏览引导。因此就会出现“浏览了该商品的用户还浏览了”的个性化推荐。
情况二:针对满意当前商品的用户引导。引导的是让用户下单,但在下单过程中,用户可能会存在犹豫,通常情况下他会对当前的产品不肯定,因此利用群集效应的个性化推荐栏“浏览了该商品的用户最终购买了”就出现了,为了增加集群效应,我们还会用百分比的形式增加消费氛围。
如右图为浏览了华为U500后的站内个性化推荐形式:
第二阶段:感兴趣
我们发现用户在不同的品类上,网站关注价格与实际成交价格具有差异性,并且这种差异性在不同品类上表现不同。有的品类网站关注价格会高于成交价格,有的品类网站关注价格会低于成交价格。
对于用户这种口是心非的行为,如果我们只是一味的按照用户实际浏览数据做个性化推荐,效果必然要打折扣,解决方法是不管在做哪方面推荐,用户的全部行为数据都要计入推荐权重中,购买的购买数据的推荐权重一定要更大。做分析和做推荐的根本是围绕有成交用户的数据,让没有成交的用户沿着有成交用户的轨迹形成转化。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 张敬轩2005《我的梦想我的路》几何娱乐[WAV+CUE][1G]
- 群星《人到四十男儿情(SRS+WIZOR)》[原抓WAV+CUE]
- 马久越《上善若水HQCDII》[低速原抓WAV+CUE]
- 龚玥《女儿情思》6N纯银SQCD【WAV+CUE】
- 张惠妹《你在看我吗》大碟15 金牌大风[WAV+CUE][1G]
- 群星《左耳·听见爱情》星文唱片[WAV+CUE][1G]
- 群星《抖音嗨疯-DISCO英文版》[WAV+CUE][1G]
- 群星.1990-情义无价(TP版)【中唱】【WAV+CUE】
- 马兆骏.1990-心情·七月【滚石】【WAV+CUE】
- 方伊琪.1979-沙鸥(LP版)【星岛全音】【WAV+CUE】
- 蔡琴《醇厚嗓音》6N纯银SQCD【WAV+CUE】
- 陈曦《遇见HQCD》[WAV+CUE]
- 大提琴-刘欣欣《爱的问候》HDCD[WAV+CUE]
- 周耀辉/邓慧中《从什么时候开始》[320K/MP3][95.71MB]
- 周耀辉/邓慧中《从什么时候开始》[FLAC/分轨][361.29MB]