谜题:三阶幻方, 试将1~9这9个不同整数填入一个3×3的表格,使得每行、每列以及每条对角线上的数字之和相同。
策略:穷举搜索。列出所有的整数填充方案,然后进行过滤。
亮点为递归函数getPermutation的设计,文章最后给出了几个非递归算法
// 递归算法,很巧妙,但太费资源 function getPermutation(arr) { if (arr.length == 1) { return [arr]; } var permutation = []; for (var i = 0; i < arr.length; i++) { var firstEle = arr[i]; //取第一个元素 var arrClone = arr.slice(0); //复制数组 arrClone.splice(i, 1); //删除第一个元素,减少数组规模 var childPermutation = getPermutation(arrClone);//递归 for (var j = 0; j < childPermutation.length; j++) { childPermutation[j].unshift(firstEle); //将取出元素插入回去 } permutation = permutation.concat(childPermutation); } return permutation; } function validateCandidate(candidate) { var sum = candidate[0] + candidate[1] + candidate[2]; for (var i = 0; i < 3; i++) { if (!(sumOfLine(candidate, i) == sum && sumOfColumn(candidate, i) == sum)) { return false; } } if (sumOfDiagonal(candidate, true) == sum && sumOfDiagonal(candidate, false) == sum) { return true; } return false; } function sumOfLine(candidate, line) { return candidate[line * 3] + candidate[line * 3 + 1] + candidate[line * 3 + 2]; } function sumOfColumn(candidate, col) { return candidate[col] + candidate[col + 3] + candidate[col + 6]; } function sumOfDiagonal(candidate, isForwardSlash) { return isForwardSlash "a", "b", "c", "d"]的全排列, 共循环4!=24次,可从任意>=0的整数index开始循环,每次累加1,直到循环完index+23后结束; *假设index=13(或13+24,13+224,13+3*24…),因为共4个元素,故迭代4次,则得到的这一个排列的过程为: *第1次迭代,13/1,商=13,余数=0,故第1个元素插入第0个位置(即下标为0),得["a"]; *第2次迭代,13/2, 商=6,余数=1,故第2个元素插入第1个位置(即下标为1),得["a", "b"]; *第3次迭代,6/3, 商=2,余数=0,故第3个元素插入第0个位置(即下标为0),得["c", "a", "b"]; *第4次迭代,2/4,商=0,余数=2, 故第4个元素插入第2个位置(即下标为2),得["c", "a", "d", "b"]; */ function perm(arr) { var result = new Array(arr.length); var fac = 1; for (var i = 2; i <= arr.length; i++) //根据数组长度计算出排列个数 fac *= i; for (var index = 0; index < fac; index++) { //每一个index对应一个排列 var t = index; for (i = 1; i <= arr.length; i++) { //确定每个数的位置 var w = t % i; for (var j = i - 1; j > w; j--) //移位,为result[w]留出空间 result[j] = result[j - 1]; result[w] = arr[i - 1]; t = Math.floor(t / i); } if (validateCandidate(result)) { console.log(result); break; } } } perm([1, 2, 3, 4, 5, 6, 7, 8, 9]); //很巧妙的回溯算法,非递归解决全排列 function seek(index, n) { var flag = false, m = n; //flag为找到位置排列的标志,m保存正在搜索哪个位置,index[n]为元素(位置编码) do { index[n]++; //设置当前位置元素 if (index[n] == index.length) //已无位置可用 index[n--] = -1; //重置当前位置,回退到上一个位置 else if (!(function () { for (var i = 0; i < n; i++) //判断当前位置的设置是否与前面位置冲突 if (index[i] == index[n]) return true;//冲突,直接回到循环前面重新设置元素值 return false; //不冲突,看当前位置是否是队列尾,是,找到一个排列;否,当前位置后移 })()) //该位置未被选择 if (m == n) //当前位置搜索完成 flag = true; else n++; //当前及以前的位置元素已经排好,位置后移 } while (!flag && n >= 0) return flag; } function perm(arr) { var index = new Array(arr.length); for (var i = 0; i < index.length; i++) index[i] = -1; for (i = 0; i < index.length - 1; i++) seek(index, i); //初始化为1,2,3,...,-1 ,最后一位元素为-1;注意是从小到大的,若元素不为数字,可以理解为其位置下标 while (seek(index, index.length - 1)) { var temp = []; for (i = 0; i < index.length; i++) temp.push(arr[index[i]]); if (validateCandidate(temp)) { console.log(temp); break; } } } perm([1, 2, 3, 4, 5, 6, 7, 8, 9]);
/*
全排列(非递归求顺序)算法
1、建立位置数组,即对位置进行排列,排列成功后转换为元素的排列;
2、按如下算法求全排列:
设P是1~n(位置编号)的一个全排列:p = p1,p2...pn = p1,p2...pj-1,pj,pj+1...pk-1,pk,pk+1...pn
(1)从排列的尾部开始,找出第一个比右边位置编号小的索引j(j从首部开始计算),即j = max{i | pi < pi+1}
(2)在pj的右边的位置编号中,找出所有比pj大的位置编号中最小的位置编号的索引k,即 k = max{i | pi > pj}
pj右边的位置编号是从右至左递增的,因此k是所有大于pj的位置编号中索引最大的
(3)交换pj与pk
(4)再将pj+1...pk-1,pk,pk+1...pn翻转得到排列p' = p1,p2...pj-1,pj,pn...pk+1,pk,pk-1...pj+1
(5)p'便是排列p的下一个排列
例如:
24310是位置编号0~4的一个排列,求它下一个排列的步骤如下:
(1)从右至左找出排列中第一个比右边数字小的数字2;
(2)在该数字后的数字中找出比2大的数中最小的一个3;
(3)将2与3交换得到34210;
(4)将原来2(当前3)后面的所有数字翻转,即翻转4210,得30124;
(5)求得24310的下一个排列为30124。
*/
function swap(arr, i, j) { var t = arr[i]; arr[i] = arr[j]; arr[j] = t; } function sort(index) { for (var j = index.length - 2; j >= 0 && index[j] > index[j + 1]; j--) ; //本循环从位置数组的末尾开始,找到第一个左边小于右边的位置,即j if (j < 0) return false; //已完成全部排列 for (var k = index.length - 1; index[k] < index[j]; k--) ; //本循环从位置数组的末尾开始,找到比j位置大的位置中最小的,即k swap(index, j, k); for (j = j + 1, k = index.length - 1; j < k; j++, k--) swap(index, j, k); //本循环翻转j+1到末尾的所有位置 return true; } function perm(arr) { var index = new Array(arr.length); for (var i = 0; i < index.length; i++) index[i] = i; do { var temp = []; for (i = 0; i < index.length; i++) temp.push(arr[index[i]]); if (validateCandidate(temp)) { console.log(temp); break; } } while (sort(index)); } perm([1, 2, 3, 4, 5, 6, 7, 8, 9]);
以上所述就是本文的全部内容了,希望大家能够喜欢。
javascript,九宫格
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 柏菲·珞叔作品集《金色大厅2》限量开盘母带ORMCD[低速原抓WAV+CUE]
- Gareth.T《sad songs(Explicit)》[320K/MP3][29.03MB]
- Gareth.T《sad songs(Explicit)》[FLAC/分轨][152.85MB]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[320K/MP3][63.06MB]
- 龚玥《金装龚玥HQCD》头版限量[WAV分轨]
- 李小春《吻别》萨克斯演奏经典[原抓WAV+CUE]
- 齐秦《辉煌30年24K珍藏版》2CD[WAV+CUE]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[FLAC/分轨][321.47MB]
- 群星 《世界经典汽车音乐》 [WAV分轨][1G]
- 冷漠.2011 《冷漠的爱DSD》[WAV+CUE][1.2G]
- 陈明《流金岁月精逊【中唱】【WAV+CUE】
- 群星《Jazz-Ladies1-2爵士女伶1-2》HQCD/2CD[原抓WAV+CUE]
- 群星《美女私房歌》(黑胶)[WAV分轨]
- 郑源.2009《试音天碟》24BIT-96KHZ[WAV+CUE][1.2G]
- 飞利浦试音碟 《环球群星监听录》SACD香港版[WAV+CUE][1.1G]